[英文期刊]
[28] Lu X, Xu H, Xu LH. Self-centering friction beam-column joint: A promising approach to seismic and progressive collapse resilience, Structures, 2024, 65: 106743.
[27] Lu X, Lei JH, Han MM. Seismic responses and loss evaluation of RC frame with slotted infill walls[J], Engineering Structures, 2024, 311: 118214.
[26] Lu X, Sun WH, Xu LH. Experimental investigation on seismic behavior of damaged self-centering friction beam-column joints after repair[J], Engineering Structures, 2024, 310: 118135.
[25] Lu X, Liu B, Sun W, Xu LH. Seismic performance investigation on self-centering friction frames: Collapse capacity and post-earthquake recovery [J]. Soil Dynamics and Earthquake Engineering, 2024, 179: 108555.
[24] Lu X, Xie LL, Lv QL. Enhance the resilience of steel outrigger by equipping GFRP tendons and viscoelastic material[J]. Journal of Earthquake Engineering. 2024, 28(3): 866-883, DOI: 10.1080/13632469.2023.2220421.
[23] Lu X, Xu H, Zhang XM, Xie LL. Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints [J]. Engineering Structures, 2023,285:116062.
[22] Lu X, Lv ZK, Xu LH. Investigation of a self-centering frictional energy dissipation outrigger equipped to supertall buildings[J]. Journal of Building Engineering, 2022, 61:105313.
[21] Lu X, Ji Xinru, Yan ZJ. Seismic collapse assessment of reinforced concrete frames infilled with hollow concrete bricks [J]. Journal of Building Engineering, 2022, 59:105156.
[20] Lu X, Yan Z. Development and validation of a modified equivalent strut model of lightweight masonry block infill walls for quasi-static in-plane cyclic analysis[J]. Journal of Earthquake Engineering, 2022, 26(15):7901-7920. Doi: 10.1080/13632469.2021.1988762.
[19] Lu X, Chen A. Quantitative evaluation and improvement of seismic resilience of a tall frame shear wall structure[J]. The Structural Design of Tall and Special Buildings, 2022, 31(1): e1899, Doi: 10.1002/tal.1899 .
[18] Lu X, Zha S. Full-scale experimental investigation of the in-plane seismic performance of a novel resilient infill wall[J]. Engineering Structures, 2021, 232: 111826.
[17] Lu X, Lv ZK, Lv QL. Self‐centering viscoelastic diagonal brace for the outrigger of supertall buildings: Development and experiment investigation [J]. The Structural Design of Tall and Special Buildings, 2020, 29(1): e1684.
[16] Hu RP, Xu YL, Lu X, Zhang CD, Zhang QL, Ding JM. Hu R, Xu Y, Lu X, et al. Integrated multi‐type sensor placement and response reconstruction method for high‐rise buildings under unknown seismic loading[J]. The Structural Design of Tall and Special Buildings, 2018, 27(6): e1453.
[15] Zhang L, Lu XZ, Guan H, Xie LL, Lu X. Floor acceleration control of super‐tall buildings with vibration reduction substructures[J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): e1343.
[14] Tian Y, Lu X, Lu XZ, Li MK, Guan H. Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthquakes and Structures, 2016,11(6), 925-942.
[13] Lu X, Lu XZ, Guan H, Xie LL. Application of earthquake-induced collapse analysis in design optimization of a super-tall building, The Structural Design of Tall and Special Buildings, 2016, 25(17): 926-946.
[12] Lu XZ, Xie LL, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building. Engineering Structures, 2016,110, 116-126.
[11] Lu ZX, Li MK, Guan H, Lu X, Ye LP. A comparative case study on seismic design of tall RC frame‐core‐tube structures in China and USA. The Structural Design of Tall and Special Buildings, 2015,24 (9), 687-702.
[10] Lu XZ, Xie LL, Guan H, Huang YL, Lu X. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design 2015,98, 14-25.
[9] Xie LL, Lu XZ, Guan H, Lu X. Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure. Journal of Earthquake Engineering, 2015,19 (8), 1320-1344.
[8] Lu X, Lu XZ, Sezen H, Ye LP. Development of a simplified model and seismic energy dissipation in a super-tall building. Engineering Structures, 2014,67, 109-122.
[7] Li MK, Lu X, Lu XZ, Ye LP. Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering,2014,6 (5), 477-485.
[6] Lu X, Ye LP, Lu XZ, Li MK, Ma XW. An improved ground motion intensity measure for super high-rise buildings. Science China Technological Sciences, 2013,56 (6), 1525-1533.
[5] Lu XZ, Lu X, Guan H, Zhang WK, Ye LP. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. Journal of Constructional Steel Research, 2013,82, 59-71.
[4] Lu X, Lu XZ, Guan H, Ye LP. Collapse simulation of reinforced concrete high‐rise building induced by extreme earthquakes. Earthquake Engineering & Structural Dynamics, 2013,42 (5), 705-723.
[3] Lu X, Lu XZ, Guan H, Ye LP. Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings. Advances in Structural Engineering, 2013,16 (7), 1249-1262.
[2] Xu Z, Lu XZ, Guan H, Lu X, Ren AZ. Progressive-collapse simulation and critical region identification of a stone arch bridge. Journal of Performance of Constructed Facilities, 2012,27 (1), 43-52.
[1] Lu X, Lu XZ, Zhang WK, Ye LP. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. Science China Technological Sciences,2011,54 (10), 2549-2560.
[中文期刊]
[27] 卢啸, 孙伟豪. 带摩擦型自复位节点的混凝土框架结构地震响应与易损性研究[J]. 工程力学, 2024. doi: 10.6052/j.issn.1000-4750.2023.12.0902
[26] 卢啸, 徐航, 张雪敏. 摩擦型自复位梁柱节点的滞回与损伤性能研究[J]. 工程力学, 2024, doi: 10.6052/j.issn.1000-4750.2023.03.0197.
[25] 李波, 胡涛, 田玉基, 刘悦, 卢啸, 张范, 宋晓峰, 白凡. 北京2022年冬奥会内场主火炬抗风性能研究[J]. 工程力学. 2024, 41(10): 43-48.
[24] 卢啸, 纪欣如. 考虑填充墙力学贡献的规范RC框架办公楼抗震韧性评价. 工程力学, 2024, 41(9): 69-78.
[23] 孙静, 吴君怡, 卢啸. 框支密肋复合墙结构地震易损性研究[J]. 工程力学. 2023, 40(6): 61-72.
[22] 叶列平, 金鑫磊, 田源, 陆新征, 缪志伟, 曲哲, 林旭川, 卢啸. 建筑结构抗震“体系能力设计法”综述[J]. 工程力学, 2022, 39(5): 1-12.
[21] 卢啸, 查淑敏. 一种新型分缝耗能砌体填充墙的抗震性能试验与有限元分析. 工程力学, 2021, 38(11): 105-113.
[20] 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价. 建筑结构学报, 2021, 42(5): 55-63.
[19] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究. 工程力学, 2019, 36(6): 138-146.
[18]卢啸, 吕泉林, 徐龙河, 李易. 基于伸臂桁架多尺度模型的超高层建筑地震灾变评估. 天津大学学报(自然科学与工程技术版), 2018, 51(5): 539-546.
[17]徐龙河, 于绍静, 卢啸. 基于损伤控制函数与失效概率的结构抗震性能多目标优化与评估. 工程力学2017, 34(10): 61-67.
[16] 徐龙河,肖水晶,卢啸,李忠献. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析. 工程力学, 2017,34(8): 117-124.
[15] 卢啸, 陆新征, 李梦珂, 顾栋炼, 解琳琳. 地震作用设计参数调整对框架结构抗震设计及安全性的影响. 工程力学, 2017, 34(4):22-31.
[14] 卢啸,杨蔚彪,张万开,宫贞超,陆新征,常为华. 某超高层建筑不同抗侧力体系抗震性能对比研究. 建筑结构学报. 2016,37(4), 102-109.
[13] 林楷奇, 解琳琳, 陆新征, 卢啸. 基于开源计算程序的特大跨斜拉桥地震灾变及倒塌分析. 工程力学, 2016,33 (1), 72-80.
[12] 李梦珂, 卢啸, 陆新征, 叶列平. 中美高层钢筋混凝土框架-核心筒结构抗震设计对比. 工程力学, 2015, 52-61.
[11] 卢啸, 陆新征, 叶列平, 李梦珂. 适用于超高层建筑的改进地震动强度指标.建筑结构学报. 2014,35 (2), 15-21.
[10] 卢啸, 甄伟, 陆新征, 叶列平. 最小地震剪力系数对超高层建筑结构抗震性能的影响. 建筑结构学报, 2014,88-95
[9] 陆新征, 卢啸, 李梦珂, 叶列平, 马晓伟. 上海中心大厦结构抗震分析简化模型及地震耗能分析. 建筑结构学报, 2013,34 (7), 1-10
[8] 卢啸, 陆新征, 叶列平. 超高层建筑地震动强度指标探讨.土木工程学报, 2012,45, 292-296.
[7] 何水涛, 陆新征, 卢啸, 曹海韵. 超高车辆撞击钢桥上部结构模型试验研究.振动与冲击, 2012,31 (5), 31-35.
[6] 陆新征, 张万开, 卢啸, 柳国环. 超级巨柱的弹塑性受力特性及其简化模型. 沈阳建筑大学学报 (自然科学版), 2011,27, 409-417.
[5] 陆新征, 卢啸, 张炎圣, 何水涛. 超高车辆撞击桥梁上部结构撞击力的工程计算方法. 中国公路学报, 2011,24 (2), 49-55
[4] 何水涛, 陆新征, 卢啸, 曹海韵. 超高车辆撞击钢筋混凝土 T 梁桥主梁试验研究. 兰州交通大学学报, 2011,30 (6), 20-25
[3] 卢啸, 陆新征, 叶列平, 何水涛. 钢筋混凝土拱桥构件重要性评价及超载导致倒塌破坏模拟.计算机辅助工程, 2010,19 (3), 26-30.
[2] 卢啸, 陆新征, 张劲泉, 宋建永, 叶列平. 某石拱桥连续倒塌模拟及构件重要性评价. 兰州交通大学学报, 2010,29 (6): 25-30.
[1] 陆新征, 张炎圣, 何水涛, 卢啸. 超高车辆撞击桥梁上部结构研究: 损坏机理与撞击荷载. 工程力学, 2009,26 (2), 115-124.
|