基本情况

姓  名:

卢啸

职  务:

系副主任

职  称:

副教授

学  历:

博士研究生

学  位:

博士

通信地址:

邮  编:

办公电话:

电子邮箱:

xiaolu@bjtu.edu.cn

教育背景

2008/09 – 2013/07,清华大学,土木工程系,博士
2004/09 – 2008/06,湖南大学,土木工程学院,学士

工作经历

2017/01-至今,北京交通大学,土木建筑工程学学院,副教授

2015/06 – 2016/12,北京交通大学,土木建筑工程学院,讲师

2013/07 – 2015/06,北京交通大学,土木建筑工程学院,博士后

研究方向

  • 土木工程
  • 建筑结构
  • 智能建造

招生专业

  • 土木工程硕士
  • 人工智能硕士

科研项目

  • 国家重点研发计划-任务: 高层建筑(群)灾损快速预测技术, 2024-2027
  • 国家重点研发计划-任务: 近临断层铁路桥梁抗断层变位结构体系与设计方法-5, 2023-2026
  • 北京交通大学: 沿海强风环境下超高层建筑建造风险评估及抗风减灾关键技术研究, 2022-2023
  • 其它(科技处): 摩擦型自复位现浇框架抗震韧性研究, 2023-2024
  • 面向韧性需求的摩擦型自复位现浇节点力学特性研究
  • 红果园(横): 北京2022年冬奥会和冬残奥会场内ZHJ风洞试验, 2021-2024
  • 其它(科技处): 装配式自复位支撑连接节点抗震性能与设计方法研究, 2022-2023
  • 国家自然科学基金“面上”: 火灾下密肋复合墙结构体系连续倒塌机理及倒塌行为评估方法研究, 2021-2024
  • 一种新型易修复填充墙的抗震性能研究
  • 国家自然科学基金“面上”: 声子晶体型混凝土板结构减振性能及设计方法研究, 2019-2022
  • 国家自然科学基金"青年基金": 纵向预研基金-国家自然科学基金“青年”-KCA814003533, 2018-2020
  • 北京市自然基金“面上”: 新型耗能复位伸臂桁架抗震性能研究, 2018-2020
  • 北京交通大学: 高层建筑密集区震害分析建模与老旧建筑密集区火灾模拟建模, 2016-2016
  • 国家自然科学基金“面上”: 内嵌骨架外包纤维布复合加固古建木柱的协同工作机理及组合设计理论, 2017-2020
  • 北京交通大学: 城市区域建筑群地震反应分析模型的建模, 2015-2017
  • 超高巨型结构抗震性能及设计方法研究
  • 北京交通大学: 高强钢框架地震功能可恢复性能测试与分析, 2015-2017
  • 国家自然科学基金“面上”: 基于地震易损性和倒塌分析的高耸混凝土结构抗震性能评价及加固设计理论, 2015-2018
  • 国家自然科学基金"青年基金": 基于能量法的超高巨型结构功能可恢复抗震设计与评估, 2015-2017
  • 其他部市(2020.10起仅限省部级科技计划\基金\专项): 超高巨型结构地震功能可恢复抗震评估方法研究, 2014-2015
  • 教育部: 大型数据中心油机机组荷载作用下建筑结构设计及减振隔振技术研究, 2014-2017
  • 基于多尺度理论的超高巨型结构地震灾变机理研究
  • 国家自然科学基金“重大”: 基于多尺度模拟的超高层建筑地震灾变研究, 2013-2015

教学工作

[1] 《工程制图》

[2] 《混凝土结构设计原理》

[3] 《结构概念》

论文/期刊

[英文期刊]
[28] Lu X, Xu H, Xu LH. Self-centering friction beam-column joint: A promising approach to seismic and progressive collapse resilience, Structures, 2024, 65: 106743.
[27] Lu X, Lei JH, Han MM. Seismic responses and loss evaluation of RC frame with slotted infill walls[J], Engineering Structures, 2024, 311: 118214.
[26] Lu X, Sun WH, Xu LH. Experimental investigation on seismic behavior of damaged self-centering friction beam-column joints after repair[J], Engineering Structures, 2024, 310: 118135.
[25] Lu X, Liu B, Sun W, Xu LH. Seismic performance investigation on self-centering friction frames: Collapse capacity and post-earthquake recovery [J]. Soil Dynamics and Earthquake Engineering, 2024, 179: 108555.
[24] Lu X, Xie LL, Lv QL. Enhance the resilience of steel outrigger by equipping GFRP tendons and viscoelastic material[J]. Journal of Earthquake Engineering. 2024, 28(3): 866-883, DOI: 10.1080/13632469.2023.2220421.
[23] Lu X, Xu H, Zhang XM, Xie LL. Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints [J]. Engineering Structures, 2023,285:116062.
[22] Lu X, Lv ZK, Xu LH. Investigation of a self-centering frictional energy dissipation outrigger equipped to supertall buildings[J]. Journal of Building Engineering, 2022, 61:105313. 
[21] Lu X, Ji Xinru, Yan ZJ. Seismic collapse assessment of reinforced concrete frames infilled with hollow concrete bricks [J]. Journal of Building Engineering, 2022, 59:105156. 
[20] Lu X, Yan Z. Development and validation of a modified equivalent strut model of lightweight masonry block infill walls for quasi-static in-plane cyclic analysis[J]. Journal of Earthquake Engineering, 2022, 26(15):7901-7920. Doi: 10.1080/13632469.2021.1988762.
[19] Lu X, Chen A. Quantitative evaluation and improvement of seismic resilience of a tall frame shear wall structure[J]. The Structural Design of Tall and Special Buildings, 2022, 31(1): e1899, Doi: 10.1002/tal.1899 .
[18] Lu X, Zha S. Full-scale experimental investigation of the in-plane seismic performance of a novel resilient infill wall[J]. Engineering Structures, 2021, 232: 111826.
[17] Lu X, Lv ZK, Lv QL. Self‐centering viscoelastic diagonal brace for the outrigger of supertall buildings: Development and experiment investigation [J]. The Structural Design of Tall and Special Buildings, 2020, 29(1): e1684.
[16] Hu RP, Xu YL, Lu X, Zhang CD, Zhang QL, Ding JM. Hu R, Xu Y, Lu X, et al. Integrated multi‐type sensor placement and response reconstruction method for high‐rise buildings under unknown seismic loading[J]. The Structural Design of Tall and Special Buildings, 2018, 27(6): e1453. 
[15] Zhang L, Lu XZ, Guan H, Xie LL, Lu X. Floor acceleration control of super‐tall buildings with vibration reduction substructures[J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): e1343. 
[14] Tian Y, Lu X, Lu XZ, Li MK, Guan H. Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes. Earthquakes and Structures, 2016,11(6), 925-942.
[13] Lu X, Lu XZ, Guan H, Xie LL. Application of earthquake-induced collapse analysis in design optimization of a super-tall building, The Structural Design of Tall and Special Buildings, 2016, 25(17): 926-946.
[12] Lu XZ, Xie LL, Yu C, Lu X. Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building. Engineering Structures, 2016,110, 116-126. 
[11] Lu ZX, Li MK, Guan H, Lu X, Ye LP. A comparative case study on seismic design of tall RC frame‐core‐tube structures in China and USA. The Structural Design of Tall and Special Buildings, 2015,24 (9), 687-702. 
[10] Lu XZ, Xie LL, Guan H, Huang YL, Lu X. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elements in Analysis and Design 2015,98, 14-25.
[9] Xie LL, Lu XZ, Guan H, Lu X. Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure. Journal of Earthquake Engineering, 2015,19 (8), 1320-1344.
[8] Lu X, Lu XZ, Sezen H, Ye LP. Development of a simplified model and seismic energy dissipation in a super-tall building. Engineering Structures, 2014,67, 109-122. 
[7] Li MK, Lu X, Lu XZ, Ye LP. Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings. Journal of Rock Mechanics and Geotechnical Engineering,2014,6 (5), 477-485.
[6] Lu X, Ye LP, Lu XZ, Li MK, Ma XW. An improved ground motion intensity measure for super high-rise buildings. Science China Technological Sciences, 2013,56 (6), 1525-1533.
[5] Lu XZ, Lu X, Guan H, Zhang WK, Ye LP. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. Journal of Constructional Steel Research, 2013,82, 59-71. 
[4] Lu X, Lu XZ, Guan H, Ye LP. Collapse simulation of reinforced concrete high‐rise building induced by extreme earthquakes. Earthquake Engineering & Structural Dynamics, 2013,42 (5), 705-723. 
[3] Lu X, Lu XZ, Guan H, Ye LP. Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings. Advances in Structural Engineering, 2013,16 (7), 1249-1262. 
[2] Xu Z, Lu XZ, Guan H, Lu X, Ren AZ. Progressive-collapse simulation and critical region identification of a stone arch bridge. Journal of Performance of Constructed Facilities, 2012,27 (1), 43-52.
[1] Lu X, Lu XZ, Zhang WK, Ye LP. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. Science China Technological Sciences,2011,54 (10), 2549-2560.


[中文期刊]
[27] 卢啸, 孙伟豪. 带摩擦型自复位节点的混凝土框架结构地震响应与易损性研究[J]. 工程力学, 2024. doi: 10.6052/j.issn.1000-4750.2023.12.0902  
[26] 卢啸, 徐航, 张雪敏. 摩擦型自复位梁柱节点的滞回与损伤性能研究[J]. 工程力学, 2024, doi: 10.6052/j.issn.1000-4750.2023.03.0197.
[25] 李波, 胡涛, 田玉基, 刘悦, 卢啸, 张范, 宋晓峰, 白凡. 北京2022年冬奥会内场主火炬抗风性能研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2022.07.0638
[24] 孙静, 吴君怡, 卢啸. 框支密肋复合墙结构地震易损性研究[J]. 工程力学. 2023, 40(6): 61-72. 
[23] 卢啸, 纪欣如. 考虑填充墙力学贡献的规范RC框架办公楼抗震韧性评价. 工程力学, 2024, 41(9): 69-78.
[22] 叶列平, 金鑫磊, 田源, 陆新征, 缪志伟, 曲哲, 林旭川, 卢啸. 建筑结构抗震“体系能力设计法”综述[J]. 工程力学, 2022, 39(5): 1-12. 
[21] 卢啸, 查淑敏. 一种新型分缝耗能砌体填充墙的抗震性能试验与有限元分析. 工程力学, 2021, 38(11): 105-113.
[20] 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价. 建筑结构学报, 2021, 42(5): 55-63.
[19] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究. 工程力学, 2019, 36(6): 138-146.
[18]卢啸,  吕泉林, 徐龙河, 李易. 基于伸臂桁架多尺度模型的超高层建筑地震灾变评估. 天津大学学报(自然科学与工程技术版), 2018, 51(5): 539-546.
[17]徐龙河, 于绍静, 卢啸. 基于损伤控制函数与失效概率的结构抗震性能多目标优化与评估. 工程力学2017, 34(10): 61-67. 
[16] 徐龙河,肖水晶,卢啸,李忠献. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析. 工程力学, 2017,34(8): 117-124.
[15] 卢啸, 陆新征, 李梦珂, 顾栋炼, 解琳琳. 地震作用设计参数调整对框架结构抗震设计及安全性的影响. 工程力学, 2017, 34(4):22-31.
[14] 卢啸,杨蔚彪,张万开,宫贞超,陆新征,常为华. 某超高层建筑不同抗侧力体系抗震性能对比研究. 建筑结构学报. 2016,37(4), 102-109.
[13] 林楷奇, 解琳琳, 陆新征, 卢啸. 基于开源计算程序的特大跨斜拉桥地震灾变及倒塌分析. 工程力学, 2016,33 (1), 72-80.
[12] 李梦珂, 卢啸, 陆新征, 叶列平. 中美高层钢筋混凝土框架-核心筒结构抗震设计对比. 工程力学, 2015, 52-61.
[11] 卢啸, 陆新征, 叶列平, 李梦珂. 适用于超高层建筑的改进地震动强度指标.建筑结构学报. 2014,35 (2), 15-21. 
[10] 卢啸, 甄伟, 陆新征, 叶列平. 最小地震剪力系数对超高层建筑结构抗震性能的影响. 建筑结构学报, 2014,88-95
[9] 陆新征, 卢啸, 李梦珂, 叶列平, 马晓伟. 上海中心大厦结构抗震分析简化模型及地震耗能分析. 建筑结构学报, 2013,34 (7), 1-10
[8] 卢啸, 陆新征, 叶列平. 超高层建筑地震动强度指标探讨.土木工程学报, 2012,45, 292-296.
[7] 何水涛, 陆新征, 卢啸, 曹海韵. 超高车辆撞击钢桥上部结构模型试验研究.振动与冲击, 2012,31 (5), 31-35.
[6] 陆新征, 张万开, 卢啸, 柳国环. 超级巨柱的弹塑性受力特性及其简化模型. 沈阳建筑大学学报 (自然科学版), 2011,27, 409-417.
[5] 陆新征, 卢啸, 张炎圣, 何水涛. 超高车辆撞击桥梁上部结构撞击力的工程计算方法. 中国公路学报, 2011,24 (2), 49-55
[4] 何水涛, 陆新征, 卢啸, 曹海韵. 超高车辆撞击钢筋混凝土 T 梁桥主梁试验研究. 兰州交通大学学报, 2011,30 (6), 20-25
[3] 卢啸, 陆新征, 叶列平, 何水涛. 钢筋混凝土拱桥构件重要性评价及超载导致倒塌破坏模拟.计算机辅助工程, 2010,19 (3), 26-30.
[2] 卢啸, 陆新征, 张劲泉, 宋建永, 叶列平. 某石拱桥连续倒塌模拟及构件重要性评价. 兰州交通大学学报, 2010,29 (6): 25-30.
[1] 陆新征, 张炎圣, 何水涛, 卢啸. 超高车辆撞击桥梁上部结构研究: 损坏机理与撞击荷载. 工程力学, 2009,26 (2), 115-124.

专著/译著

  • 亚洲超高层建筑集萃,2021,中国建筑工业出版社

专利

[1] 卢啸,吕泉林. 中华人民共和国发明专利(ZL 201810502375.6):基于粘弹性耗能的自复位伸臂桁架,2020-07-28. 

[2] 卢啸, 张雪敏. 中华人民共和国发明专利(ZL 202110082164.3):一种摩擦型自复位现浇梁柱节点. 2022-02-22.

软件著作权

获奖与荣誉

[9] 2023年度华夏建设科学技术奖一等奖:多目标协同减震控制建筑关键技术与工程应用,排序8/15。
[8] 2020年度高等学校科学研究优秀成果(科学技术)一等奖(自然科学奖):高层建筑结构体系的动力倒塌模型和灾变控制理论,排序3/5。
[7] 2023年北京交通大学优秀硕士学位论文指导老师,《填充墙RC框架结构的抗震韧性评价》,纪欣如。
[6] 2023年第十一届全国地震工程学术会议模拟地震振动台试验盲算竞赛第一名(一等奖,徐航)和第四名(三等奖,雷佳昊)指导教师。
[5] 2022年(第八届)北京市大学生工程设计表达竞赛:建筑类本科组建筑设计CAD表达竞赛团体一、二等奖, 指导教师。
[4] 2021年北京交通大学优秀本科毕业设计(论文)指导教师,《广西南宁档案局办公楼设计与弹塑性分析》,黄钰文。
[3] 2021年北京交通大学教学成果奖,结构工程“一体两轨多轮”研究生培养模式改革与实践,排名5/5。
[2] 2019年北京交通大学优秀硕士学位论文指导老师,《自复位粘弹性斜腹杆及伸臂桁架抗震性能研究》,吕泉林。
[1] 2014年第八届全国大学生结构设计竞赛,二等奖,指导教师。

社会兼职

[1] 《Frontiers in Built Environment》期刊编委

[2] 全国结构抗振控制与健康监测学会青年委员会委员

[3] 中国土木工程学会工程数字化分会理事

[4] 北京图学学会第十届理事会理事